Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139156

RESUMO

We have reported that selenium (Se) provided to grazing beef cattle in an inorganic (ISe) form versus a 1:1 mixture (MIX) of inorganic and organic (OSe) forms affects cholesterol biosynthesis in the corpus luteum (CL), the abundance of interferon tau (IFNτ) and progesterone (P4)-induced mRNAs in the caruncular (CAR) tissue of the endometrium, and conceptus length at maternal recognition of pregnancy (MRP). In this study, beef heifers were supplemented with a vitamin-mineral mix containing 35 ppm Se as ISe or MIX to achieve a Se-adequate status. Inseminated heifers were killed at MRP (d 17, n = 6 per treatment) for tissue collection. In CAR samples from MIX versus ISe heifers, qPCR revealed that mRNA encoding the thyroid regulating DIO2 and DIO3 was decreased (p < 0.05) and a complete transcriptomic analysis revealed effects on the interferon JAK-STAT1/2 pathway, including decreased expression of mRNAs encoding the classical interferon stimulated genes IFIT1, IFIT2, IFIT3, IRF1, IRF9, ISG15, OAS2, and RSAD2 (p < 0.05). Treatment also affected the abundance of mRNAs contributing to the immunotolerant environment (p < 0.05). In combination, these findings suggest more advanced preparation of the CAR and developing conceptus for implantation and to evade immune rejection by the maternal system in MIX- vs. ISe-treated heifers.


Assuntos
Interferon Tipo I , Selênio , Gravidez , Bovinos , Animais , Feminino , Selênio/farmacologia , Suplementos Nutricionais , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Progesterona/farmacologia , Perfilação da Expressão Gênica , Endométrio
2.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772747

RESUMO

Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) progesterone (P4) above that in cows on ISe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effect of form of Se on the transcriptome of the early LP corpus luteum (CL) with the goal of elucidating form of Se-regulated processes affecting luteal steroidogenesis and function. Non-lactating, 3-yr-old Angus-cross cows underwent 45-d Se-depletion, then repletion periods, and then at least 90 d of supplementation (TRT) with 35 ppm Se/d as either ISe (n = 5) or MIX (n = 5). CL were then recovered on day 7 of the estrous cycle, total RNA isolated, and the effect of TRT on the luteal transcriptome evaluated using bovine gene 1.0 ST arrays (Affymetrix, Inc., Santa Clara, CA). The abundance of transcripts in each CL was subjected to one-way ANOVA using Partek Genomic Suite software to determine TRT effects. Microarray analysis indicated a total of 887 transcripts that were differentially expressed and functionally annotated, with 423 and 464 up- and down-regulated (P < 0.05) in MIX vs. ISe CL, respectively. Bioinformatic analysis (Ingenuity Pathway Analysis) revealed the top TRT-affected canonical pathways to include seven specific to cholesterol biosynthesis and two to inflammatory responses. Results from the microarray analysis were corroborated by targeted real-time PCR. MIX CL had increased (P < 0.05) abundance of transcripts regulating cholesterol biosynthesis including DHCR7, DHCR24, and CYP51A1 (fold changes of 1.65, 1.48, and 1.40, respectively), suggesting MIX-induced increases in P4 to be due, in part, to increased availability of substrate to luteal cells. In addition, MIX CL had increased (P < 0.05) abundance of immune-response transcripts including C1QC, FAS, ILR8B, and IL1R1 (fold changes of 2.30, 1.74, 1.66, and 1.63, respectively). SREBF1 mRNA was also increased (1.32-fold, P < 0.05) in the MIX CL, which increases cholesterol synthesis and stimulates IL1B, linking effects of form of supplemental Se (TRT) on cholesterol biosynthesis and immune function in the CL.


In regions with soils deficient in selenium (Se), producers should supplement this trace mineral to the diet of forage-grazing cattle. We previously reported that circulating concentrations of progesterone (P4) are affected by the form of Se supplemented to cows. In this report, we aimed to determine how the form of Se affects the transcriptome of the bovine CL, with the goal of elucidating form of Se effects on luteal steroidogenesis. Cows were supplemented with the industry standard, an inorganic form of Se, or a 1:1 mix of organic and inorganic forms (MIX), with corpora lutea recovered on day 7 of the estrous cycle. The effect of TRT (form of Se) on the luteal transcriptome was then evaluated using bovine gene 1.0 ST arrays (Affymetrix, Inc., Santa Clara, CA), with the results of the microarray analysis corroborated by targeted qPCR. Treatment altered >800 transcripts in the CL, including those regulating cholesterol biosynthesis and immune function. The effect of form of Se on luteal steroidogenesis appears to be the result of changes in cholesterol biosynthesis and uptake by luteal cells, with cross talk between immune and cholesterol regulatory pathways also apparent.


Assuntos
Selênio , Ração Animal/análise , Animais , Bovinos , Colesterol , Corpo Lúteo , Feminino , Imunidade , Fase Luteal , Gravidez , Progesterona , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Selênio/farmacologia
3.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772751

RESUMO

Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) concentrations of progesterone (P4) above that in cows on ISe or OSe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effects of the form of Se on the development of the bovine conceptus and the endometrium using targeted real-time PCR (qPCR) on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-cross yearling heifers underwent 45-d Se-depletion then repletion periods, then at least 90 d of supplementation (TRT) with 35 ppm Se per day as either ISe (n = 10) or MIX (n = 10). Heifers were inseminated to a single sire after detected estrus (day 0). On day 17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrial samples and the developing conceptus were recovered from pregnant heifers (ISe, n = 6 and MIX, n = 6). qPCR was performed to determine the relative abundance of targeted transcripts in CAR and ICAR samples, with the expression data subjected to one-way ANOVA to determine TRT effects. The effect of TRT on conceptus development was analyzed using a one-tailed Student's t-test. When compared with ISe-treated heifers, MIX heifers had decreased (P < 0.05) abundance of several P4-induced and interferon-stimulated mRNA transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and DKK1 in ICAR samples and tended (P ≤ 0.10) to have decreased mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR samples, and HOXA10 and PAQR7 in ICAR samples. In contrast, MIX-supplemented heifers had increased (P < 0.05) mRNA abundance of MSTN in ICAR samples and an increase in conceptus length (ISe: 17.45 ± 3.08 cm vs. MIX: 25.96 ± 3.95 cm; P = 0.05). Notably, myostatin increases glucose secretion into histotroph and contributes to advanced conceptus development. This advancement in conceptus development occurred in the presence of similar concentrations of serum P4 (P = 0.88) and whole blood Se (P = 0.07) at MRP.


In regions with soils deficient in selenium (Se), it is recommended that this trace mineral is supplemented to the diet of forage-grazing cattle. We have previously reported that the form of Se supplemented to cattle affects the function of multiple tissues, including the testis, liver, ovary, and pituitary. The objective of this study was to determine how the form of Se supplemented to heifers to achieve a Se-adequate status affects endometrial function and development of the conceptus at maternal recognition of pregnancy (MRP). Heifers were supplemented with the industry standard, an inorganic form of Se (ISe), or a 1:1 mix of organic and inorganic forms (MIX), with the reproductive tract recovered on day 17 of pregnancy. Real-time PCR was performed to determine the relative abundance of targeted mRNA transcripts in caruncular (CAR) and intercaruncular (ICAR) endometrial samples. The form of supplemental Se affected the abundance of multiple progesterone-induced and interferon-stimulated mRNA transcripts in CAR and ICAR samples, as well as the length of the conceptus that was recovered at MRP (day 17). Overall, our results indicate differences in endometrial function and increased development of the conceptus in cattle provided with MIX vs. ISe, suggesting that the MIX form of supplemental Se may increase fertility in cattle grazing soils deficient in this trace mineral.


Assuntos
Selênio , Ração Animal/análise , Animais , Bovinos , Endométrio/metabolismo , Feminino , Humanos , Interferons , Complexo Ferro-Dextran , Gravidez , Progesterona , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Progesterona , Selênio/farmacologia
4.
Animals (Basel) ; 12(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158637

RESUMO

Selenium (Se)-deficient soils necessitate supplementation of this mineral to the diet of forage-grazing cattle. Functionally, Se is incorporated into selenoproteins, some of which function as important antioxidants. We have previously shown that the source of supplemental Se; inorganic (sodium selenite or sodium selenate; ISe), organic (selenomethionine or selenocysteine; OSe) or 1:1 mix of ISe and OSe (MIX), provided to Angus-cross cows affects concentrations of progesterone (P4) during the early luteal phase of the estrous cycle. In this study, we sought to investigate (1) the effect of form of Se on the expression of mRNA encoding selenoproteins in the corpus luteum (CL), and (2) whether this previously reported MIX-induced increase in P4 is the result of increased luteal expression of key steroidogenic transcripts. Following a Se depletion and repletion regimen, 3-year-old, non-lactating, Angus- cross cows were supplemented with either ISe as the industry standard, or MIX for at least 90 days, with the CL then retrieved on Day 7 post-estrus. Half of each CL was used for analysis of targeted mRNA transcripts and the remainder was dissociated for culture with select agonists. The expression of three selenoprotein transcripts and one selenoprotein P receptor was increased (p < 0.05), with an additional five transcripts tending to be increased (p < 0.10), in cows supplemented with MIX versus ISe. In cultures of luteal cells, hCG-induced increases in P4 (p < 0.05) were observed in CL obtained from ISe-supplemented cows. The abundance of steroidogenic transcripts in the CL was not affected by the form of Se, however, the abundance of mRNA encoding 2 key transcripts regulating cholesterol availability (Ldlr and Hsl) was increased (p < 0.05) in MIX-supplemented cows. Overall, the form of Se provided to cows is reported to affect the expression of mRNA encoding several selenoproteins in the CL, and that the form of Se-induced effects on luteal production of P4 appears to be the result of changes in cholesterol availability rather than a direct effect on the expression of steroidogenic enzymes within the CL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...